EXAMINATIONS COUNCIL OF ZAMBIA

Examination for School Certificate Ordinary Level

Chemistry

5070/1

Paper 1 Multiple Choice

Friday

4 NOVEMBER 2016

Additional Materials:

Electronic calculator (non programmable) and/or Mathematical tables Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recommended)

Time 1 hour

Instructions to Candidates

Do not open this question paper until you are told to do so.

Look at the left hand side of your answer sheet. Ensure that your name, the school/centre name and subject paper are **printed**. Also ensure that the subject code, paper number, centre code, your examination number and the year are printed and shaded. Do not change the already printed information.

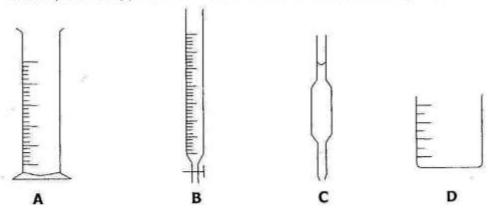
There are **forty** questions in this paper. Answer all questions. For each question there are four possible answers, **A**, **B**, **C** and **D**. Choose the one you consider correct and record your choice in **soft pencil** on the separate answer sheet provided.

Read very carefully the instructions on the Answer Sheet.

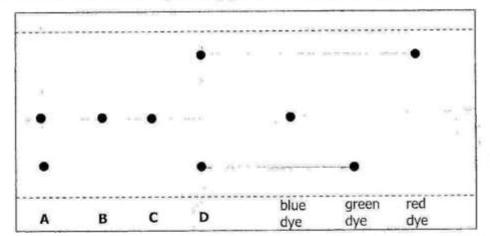
Information for Candidates

Each correct answer will score one mark.

Any rough working should be done in this question paper.

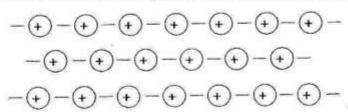

The **Periodic Table** is printed on page 12.

Cell phones are not allowed in the examination room.

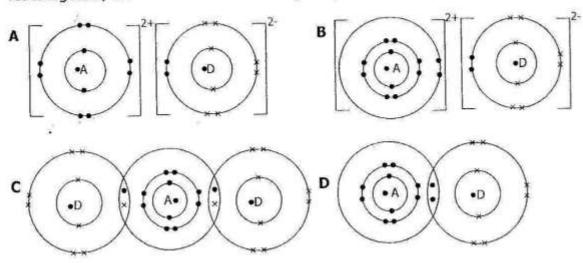


Page 2 of 12

- What are the basic units of matter in water?
 - A Atoms
 - B Electrons
 - C Ions
 - D Molecules
- Which of the following is not a change of state?
 - A Condensation
 - B Filtration
 - C Sublimation
 - **D** Vaporization
- 3 Which piece of apparatus can be used to measure accurately 15.6cm³ of solution?


The diagram below shows a chromatogram obtained using solutions A, B, C and D on one side and the dyes blue, green and red on the other side.

Which of the solutions A, B, C and D contains green and red dyes only?


- 5 The mixture which contains elements only is ...
 - A air.
 - B brass.
 - C mineral water.
 - D seawater.

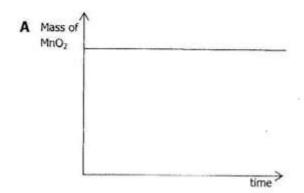
6 The structure below represents a solid substance at r.t.p.

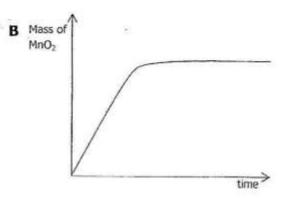
Which of the following substances is likely to have the structure above?

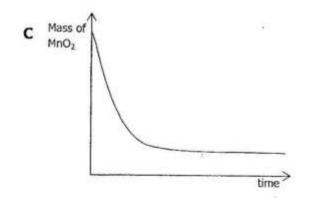
- A Aluminium
- B Calcium
- C Lithium
- D Magnesium
- 7 Elements A and D have atomic numbers 12 and 8 respectively. When A and D react together, the structure of the resulting compound is ...

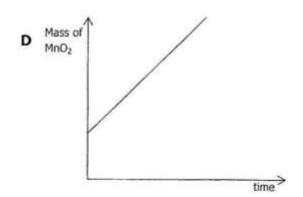
- 8 Which of the following common substances contains ethanoic acid?
 - A Cooking oil
 - B Dish washing liquid
 - C Jik
 - D Vinegar
- 9 Which one of the following substances will neutralize both dilute hydrochloric acid and aqueous ammonia solutions?
 - A Aluminium hydroxide
 - B Copper (II) hydroxide
 - C Iron (II) hydroxide
 - D Magnesium hydroxide

Page 4 of 12

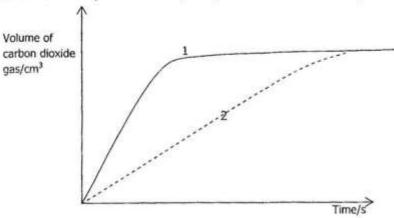

10	Whice A	ch of the fol Barium C	10.00	cannot be	rystallized from an aq	ueous solution?
	В	Magnesiu	ım Sulphate			
	C	Silver Chi	loride			
	D	Sodium E	thanoate			
11	Whice A	ch one of th	e following o	oxides has a	pH of 7?	
	В	Hydroger	oxide			
	C	Sodium o				
	D	Magnesiu	ım oxide			
12	A co	mpound ha	s the empirio	cal formula	of CH ₂ O and a relative	molecular mass of
	60. \	What is the	molecular fo	rmula of th	s compound?	
	Α	C ₂ H ₄ O			00.0640 4.06 6 00 9 940.010.240.0	
	В	C ₃ H ₄ O ₂				
	C	C ₃ H ₄ O ₃				
	D	$C_2H_4O_2$				
13	Wha	t mass of m	ethane, CH4	, occupies	ne same volume, mea	sured at r.t.p as 11g
	of ca	arbon dioxid	e?			
	Α	4g *				
	В	16g				
	C	176g				
	D	264g				
14	A so	lution was r	nade by diss	olving 14.0	of potassium hydrox	ide, KOH, to make
	50cm	n ³ of solutio	n. What is t	ne concentr	ition of the solution in	mol/dm ³ ?
	A	0.25				
	В	0.28				
	C	2.5				
	D	5.0				
15	The	equation of	a chemical	reaction is g	iven below.	
	a.P4(s) + BKCIO	$g_{(s)} \rightarrow \underline{c} P_2 O_5$	(s) + <u>d</u> KCl(s		
			letters a, I		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	used to balance the
		а	b	c	d	
	Α	3	10	6	10	
	В	3	5	3	5	
	C	2	3	4	3	
	D	1	2	2	2	


- One mole of hydrogen gas and one mole of water have an equal number of ...
 - A atoms.
 - B electrons.
 - C ions.
 - D molecules.
- 17 Hydrogen and chlorine gases react under suitable conditions as shown in the reversible chemical equation below.


$$H_{2(g)} + Cl_{2(g)} \longrightarrow 2HCl_{(g)} \quad \Delta H = +184kJ/mol$$


Which one of the following changes will affect the position of the equilibrium?

- A Addition of a catalyst
- B Change of volume /
- C Increase in temperature
- D Increase in pressure
- A pupil prepared oxygen gas from potassium chlorate by using manganese (IV) oxide, MnO₂, as a catalyst. Which of the following graphs shows how the mass of manganese (IV) oxide changed with time during the reaction?



Page 6 of 12

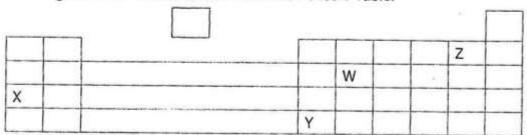
19 Curve 1 shows the volume of carbon dioxide gas given off when 8g of calcium carbonate lumps react completely with excess dilute hydrochloric acid at 20°C.

Curve 2 could be produced by using ...

- A 2g of powdered calcium carbonate.
- B 3g of calcium carbonate lumps.
- C a lower temperature. —
- D a more concentrated solution of the acid.
- 20 Some bond enthalpy in kj/mol are shown in the table below.

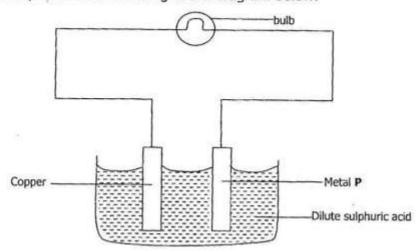
Bond	C - H	CI – CI	C-CI	H – H
Bond enthalpy in kJ/mol	413	242	346	436

Find the enthalpy change for the reaction below


$$\mathsf{CH}_{4(g)} + 2\mathsf{Cl}_{2(g)} \to \mathsf{CCl}_{4(g)} + 2\mathsf{H}_{2(g)}$$

- A +53.8kJ/mol
- B -53.8kJ/mol
- C -120kJ/mol
- D +120kJ/mol
- 21 Which statement about a catalyst is correct? It ...
 - A increases the energy barrier of the reaction.
 - B lowers the energy barrier of the reaction.
 - c increases the bond energy of the reaction.
 - D lowers the bond energy of the reaction.
- 22 An element E, forms coloured compounds which are commonly used as catalysts.

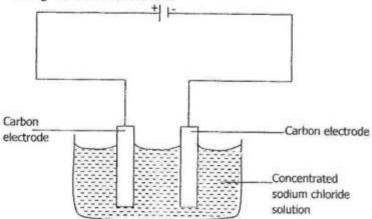
In which section of the Periodic Table is element E found?


- A Alkali metals
- B Halogens
- C Noble gases
- D Transition metals

23 The diagram below shows an outline of the Periodic Table.

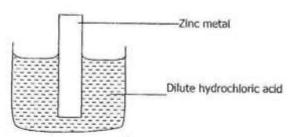
Which of the following statements is correct?

- A The melting point of X is higher than that of Z.
- B X and Z can react to form a covalent compound XZ.
- Y reacts with oxygen to form an oxide with the formula, Y₃O₂.
- W reacts with an acid to form a salt and hydrogen gas.
- An electrochemical cell was made by dipping a copper rod and a rod of metal **P** in dilute sulphuric acid according to the diagram below:


The bulb did not light up. What was metal P?

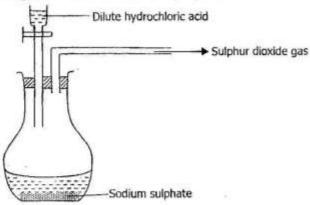
- A Aluminium
- B Copper
- C Gold
- D Zinc
- 25 Dilute copper (II) sulphate solution was electrolyzed using inert electrodes. Find the quantities for the electrode products if 0.2 moles of electrons were used at r.t.p.

Cathode	Anode
4.8dm³ of hydrogen gas	1.2dm³ of oxygen gas
2.4dm ³ of hydrogen gas	4.8dm ³ of oxygen gas
2.4g of copper	4.8dm³ of oxygen gas
6.4g of copper *	1.2dm ³ of oxygen gas


Page 8 of 12

26 The apparatus below shows the electrolysis of concentrated sodium chloride solution using carbon electrodes.

What took place at the cathode?


- A Sodium ions were oxidized.
- B Sodium ions were reduced.
- C Hydrogen ions were reduced.
- D Hydrogen ions were oxidized.
- 27 Which of the following is true about mercury? It ...
 - A is an insulator.
 - B is an electrolyte.
 - C conducts electricity by the movement of ions.
 - D conducts electricity by movement of electrons.
- 28 Mild steel is an alloy of two elements. What are these elements?
 - A Copper and Tin
 - B Copper and Zinc
 - C Iron and Tin
 - D Iron and Carbon
- 29 In the laboratory, an experiment was set up as shown in the diagram below.

Which of the following is the correct equation for the reaction in the above experiment?

- A Zn + HCl → ZnCl + H
- B 2Zn + HCl → 2ZnCl + H₂
- C $Zn + 2HCl \rightarrow ZnCl_2 + H_2 \sim$
- D $Zn + HCl \rightarrow ZnCl_2 + H_2$

- 30 Which of the following metals forms the least stable nitrate?
 - A Aluminium
 - B Copper
 - C Silver
 - D Sodium
- 31 A powdered mixture of metals contains magnesium, copper, iron and zinc. Excess dilute sulphuric acid is added until no more reaction occurs. What is the residue left in the reaction vessel?
 - A Copper
 - B Iron
 - C Magnesium
 - D Zinc
- 32 The diagram below shows the preparation of Sulphur dioxide gas.

Which of the following methods can be used to collect Sulphur dioxide gas?

- A Downward displacement of water.
- B Downward displacement of air.
- C Upward displacement of air.
- D Upward delivery of the gas.
- 33 The source of nitrogen used in the manufacture of ammonia using the Haber process is ...
 - A fractional distillation of liquid air.
 - B the decomposition of organic matter.
 - c the decomposition of ammonium nitrate.
 - D the electrolysis of water.
- 34 Which of the following fuels is environmental friendly?
 - A Coal
 - B Ethanol
 - C Hydrogen
 - D Petrol

Page 10 of 12

- 35 Which method of rust prevention does **not** involve coating the iron or steel object?
 - A Alloying
 - B Electroplating
 - C Galvanising
 - D Painting
- 36 Which set of polymers comprises natural polymers?
 - A Protein, fats and nylon.
 - B Protein, fats and cellulose.
 - C Protein, cellulose and nylon.
 - D Nylon, cellulose and fats.
- 37 Which type of reaction occurs when glucose is formed from starch?
 - A Polymerization
 - B Hydrolysis
 - C Fermentation
 - D Cracking
- 38 A compound has the following structure.

$$c = c - c - c - H$$

Which of the reactions below will this compound undergo?

- 1. It will react with methanoic acid to form an ester
- 2. It will decolourise bromine water rapidly
- 3. It will react with an alkali to form a salt
- A 1, 2 and 3
- B 2 and 3 only
- C 1 and 2 only
- **D** 1 only
- 39 Which of the following plastics is thermally stable?
 - A Poly(ethene)
 - B Poly(propene)
 - C Poly(vinylchloride)
 - D Poly(tetrafluoroethene)

- 40 An organic compound, R, has an empirical formula, CH₂O. R gives out carbon dioxide from marble chips. Which of the following is the structure of compound R?
 - A H-C-O-C-H
 - B H-C-C-O-H
 - C H C O C H
 - c = c

	Flements
SHEET	-
DATAS	Table
۵	riodic
	he Pe

Group																	
_	=											=	2	>	>	5	0
170				ì			- Hydrogen	r									₹ Fe Fe
Lifted 23 23 Sodium	Be Beryflum 4 24 Nag Magnesium 12	_F E		*	1	¥.					Ē	Beron S 27 AVunusum	Si S	Narogen 7 31 31 Prosphorus	18 Ooygan 32 32 Subhur 16		10 NG 20 10 NG 40 10 NG
g × 2	2 C 2 6	Scandium 21	Ti Tibroun 22	Variabilium 23	S2 Chromum 24	Margarese 25	. Fe Iron	Cobat. 27		25 Cepoer 25	8 Zz 88	Ga Gabur 31	Ge Germanum	As Arsents			
Rb Rubridom 37	Sromer Strongs	88 > Yuman 86	2roanum 40	Noonum Noonum	Moybdenum 42	Tonestum	104 Ruthentum			Ag Silver 47	112 Cadmium 48	115 Indian 49	So	122 Sb Antmony 51	Te Tellurium 52	127 — solver 127	131 Xenon Xenon
Csestum 56	137 Bannan 56		Hefrium 72	Taristum 73	184 W Turgsten 74						Hg Mecury		207 F82 F89	209 Bismuth 83	Polonium 84	At Asserte	Radon 88
Fr	Radium Redium	Ac Admin 89															
58-71 L 90-103	*58-71 Lanthanoid series +90-103 Actinoid series	d series series		Ce Cerum Se	Presendymism 59	Nd Needymaum.	Promethium 61	Sm Samerlum 62	Eu Eurpum 63	Gadolnu Gadolnu B4	Terbium 85	Dy Dy Dysprosum 66	Hornum 67	Er Erbium 68	Tmotham 168	73 Yestolu 70 70 70	Lu Lussium 71
L		a st relative stern	stronge mass	232		238											

Mendelawium 101 Thuisan Thuisan 68 **P** 28 89 Fermium 100 Energenium 89 Holmum 67 Californium 98 Dy Dysprosium 66 Berkelium 97 Gadoinu Terbium 6 Curing 8 E 3) Europum 63 Am Americium 95 Samerlum E Pu Plutonium 94 Page Promotern 18 Nepurium 93 Neodymum. U Usanum 92 Pr Preseodymenn 58 Protectinium 91 Certura 58 Thorner

a = relative atomic mass
X = atomic symbol
b = proton (atomic) number

× ×

Key

Laurencium 103

Nobeliu TO2

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). $NA = 6.0 \times 10^{23} / mol; \ 1F = 96500C.$ Chemistry/5070/1/2016 a

Gidemy.com